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Signal detection via residence times statistics: Noise-mediated minimization
of the measurement error
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We study the problem of detecting a small dc signal by quantifying its effect on the mean diff&r@rice
residence times in the stable steady states of a bistable dynamical measurement device, in the presence of a
noise floor and a known time-sinusoidal bias signal. Errors in the measurement process occur due to a finite
observation time that is present in most practical scenarios. The error is found to have a nonmonotonic
dependence on the noise intensity; at a critical noise intensity, the error is minimized. This phenomenon,
reminiscent of the well-knowstochastic resonanceffect, can also be obtained by adjusting the device tuning
parameters for a given noise floor. The effect appears to be most pronounced for subthreshold bias signals in
the strongly nonlinear response regime.
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A constant external signal can break the symmetry of non- The system asymmetry enters via the snjedimpared to
linear systems; this phenomenon manifests itself, e.g., asthe energy barrier height in the absence of the periodid bias
nonzero current in stochastic ratchgts, the appearance of target signak; for c#0 the potentiaM(x,t) is skewed with
even harmonics of a known time-sinusoidal bias signal in thehe potential wells having unequal depths in the absence of
power spectral densitfPSD) [2], or a nonzero difference in  the periodic bias. We set=b=1 throughout this work.
the average residence times in the stable attractors of a two- |, Ref. [8] we computed the residence times distributions
state systenh3,4]. The appearance of these features can bgg \ye|| as the mean residence times differendein the
used as a means of detecting and quantifying a “target” dc, jiapatic regime and the weak noise but strong forcing limit
signal[3-5] (e.g., conventional fluxgate sensors use the ap(i_e_ for AID>1 with A subthreshold.In this regime, one

pearance of even harmonics in the PEE)). However, in appears to get the maximalonlinea¥ shift AT, for a given

most applications, one can only observe the signal for afinitef\ t sianak: dinaly. this is th ime f hich
time intervalT,,, thereby raising the spectre of a statistical arget signat, accordingly, this Is the regime for which we
error in the detection procedure. This error depends on thgompute the_ measurement error stemming fr_or_n the finite
length of the time serie§.e., directly onT,,) as well as the °PServation time. We note that the notion of tfieite) ob-

system and the noise parameters. It seems reasonable, thegfvation time was introduced in Rg4], in connection with

fore, to assume that the error could be minimized by a suitthe definition of a response signal-to-noise ratio for the case

able adjustment of these parameters. of a strongly suprathreshold periodic bias signal; in this
Here, we consider a bistable dynamical detector. In théegime—also the regime of our experimeft$—AT is pro-

absence of an asymmetrizing dc signal, the mean resideng@rtional toc. Before studying the measurement erfor

times(and their density functionsn the stable steady states AT), we outline the main results from our earlier wdf.

are identical. The presence of the dc signal leads to a finite The residence time distributiodRTDs) in the metastable

difference in the mean residence times together with a splitstates are well approximated by sums of Gausdi8hs

ting of the associated density function. These phenomena can

be quantified using a simple counting circuit, which allows .

one to estimate the target signal from the mean residence, D p" 7= (m+12T+ 6]

times differenceAT. The procedure has been successfully (1) =( p)m:() Wex 252

utilized in a real dynamical device, a fluxgate magnetometer 2

[4], and boasts several advantages over conventi&@®D-

based detection schemes. We will show that the measure-

ment error, due to a finitd,,,, exhibits a nonmonotonic for state 1; the RTD of state (), is identical but with

dependence on the noise intensity, ithere is an optimal the substitutionp—q, 6— — 4. The variables +p and 1

noise intensity for which the error is minimized —( designate the probabilities to escape states 1 and 2, re-
Our prototype system consists of the stand@fHover- ~ spectively, in the first period’; these probabilities corre-

damped Duffing oscillator underpinned by the bistable po-Spond to the area under the first peak of the R§Bown by

tential energy functionV(x,t)=—(a/2)x?>+ (b/4)x*+cx  shaded regions in Fig)lo is the width(standard deviation

—Axcosft), that includes aknown external bias signal ©f the peaksi is the asymmetry-induced shift in the peaks

Acost) in a zero-mean white noise flo@(t) with inten- ~ from locations (n+1/2)T. It is straightforward to calculate
sity 2D: [8] the first moments of the RTD$7;) and(,), from Eq.

(2: (1)=apT2+ 68, (m)=aqT/2— 5, where apq=(1
+p,q)/(1-p,q). Hence, the average difference in residence
times is

dV(Xx,t)
X

X=

+&(1). D
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0.003 ence in the residence times in the metastable states; these
 T/oe5 . consist ofN residence times in each state:
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T We also note that observation tiriig,, is a random variable
FIG. 1. The residence times probability densities and P, [see the definitiori4)] with average value
obtained from Eq(2). The parameters a@=1, b=1, c=0.012, N N
A=0:35,070.0025, and=0.003. (Top)= 2, (rnh+ Z (72p)=N({m0) +(72))
AT=(ap—ay)T/2+26. 3 T
The detection/quantification of the constant sigral =N(a,+ aq)i. (8)

hinges on the functional interrelation between it and the non-
zero differenceAT in mean residence times. We now con-
sider the normalized standard error, that results from the fi
nite observation timé& ,,, when making a measurement of

Then, using Eqs(3), (7), and (8) we obtain the dimen-
Sionless standard deviatidor the error of the measurement

AT OAT 1
Let 7; , denote the measured residence tinffes states Er:ﬁ: (ao—ag) T2+ 25
i €{1,2}) from which the average residence times are com- P
puted. Then forN residence time measurements for each (aptag)T pT? qT?
state, we have 2T 20%+ 5+ 5|
" | ob (1-p)° (1-a)
Tob= 2, Tint >, 720 ) ©
n=1 n=1

It is clear thatE,<(To,) Y% and therefore liny , ...E,

The average values of the residence times, which inchide =0, i.e., the error decreases with increasing observation
elements, arer,=(1/N)=N_,7 , with the differences be- time, as should be expected. As a final note, we point out that
tween the average valuéscall that(- - - ) denotes the the- expression(9) is obtained for f|x§dN. GeneralizingN to_

. . — mean the average number of switches between states in the
oretical mean ""?"“e computed_ directly from the RTR fixed observation tim&,,, we may rewrite{T,p,) asTop in
—(1)= 8, yielding the errors in the measurement of eacth. (9), valid whenT ;> ((7,)+(r,)) (however, it should

mean residence time. Assuming the independence of the regiz noted that expressioi®) is valid for arbitraryT,, and
dence times, and using the equatigns,)=(7;) we obtain  penceN).

for the average errors and their variances Figure 2 shows the main result. We plot the error as a
1 function of the noise intensity paramefer good agreement
(8,)=(1)—{1)==N(7)—(7)=0, (5)  between the theory and simulations is observed. The numeri-
i N cal results are obtained via the following technique: for every
- chosen noise intensity, the numerical experiments are done
Ui2:<(5ri_<5ri>)2>:<(7i_<Ti>)2> M times, and the averaged quantitiesT,pp
N =Ny (710 7o) and  ATp=(UN)Z}L, (71,
_ i S f@(T' ()P (e —Ton)m (M=1,2,3 ... M) are calculated. In terms of these
N2 & Jo B VT2 TR R averages We_obtain<Tob>M=(1/M)Em=lTobm, ATy
N =AM)EM_ AT, and  ofy, =(LM)ZH_ (AT,
——| o2+ T2 p~ , (6) —ATy)?. The final expression for the numerically computed
N (1-p)? error is then,
where we have used the shorthand notapen(p,q) for i E, (T, /T) Y2~ Ity /(Tob>M (10)
=(1,2), respectively. We now introduce the average differ- ritob ATy T °
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FIG. 3. The dimensionless standard deviationthe erroy E,
« Vs noise intensity paramet&, computed via Eq(9). A=0.35, Q)
— 30 =0.0025, anct=0.001], . .. ,0.012 with the step 0.00From top to
3 20 bottom). The dashed curve is the locus of criti€alalues from Eq.
- 55 (12) and the dots are the actual critical values.
=z E, . . R .
gins to synchronize to the periodic bias signal—this cabses
15 2.0 to change relatively slowly over a range bf In fact, the
number of transitions in the tim&,, becomes independent
of D (for not too largeD), saturating aiN/(T,,/2). How-
15 ever, in this regionE,  increases due to an increasedp
1.0 i i i
00020 00025 00030 00035 00040 00045 hgnce, the normalized errErrl increase$Fig. 2(b)]. Henc_e,
D it is the interplay between the two effects, the decreasing of

1/JN and the concomitant increasing Efl (both of which

FIG. 2. (a) The dimensionless standard deviati@n the erroy T
are brought about by the synchronization of the response to

E, vs noise intensity paramet@. (b) The errorE, (dashed ling

and 1A/N (solid line) in the same&normalized units. The crossover the periodic bigsthat leads to the minimum in the erry . .
point approximately corresponds to the location of the minimum inThis effect is therefore closely related to that of stochastic

(). A=0.35, 0 =0.0025, andc=0.005. Theoretical results were resonanc¢l0] which is also related to the synchronization of

obtained from Eq(9) (using expression fop,q,d,o obtained in the response to th(_:: periodic f|eld: Howe_ver, it should be

Ref. [8]), data points are from digital simulation. stressed that the difference here is that in our system the
signal to be detected is a dc field—not tkiwown periodic

In all the figures we ensure that, given the asymmetry-bias- o

inducing signak, the bias signal amplituda is selected so ~_ he fact that the minimum occurs as a result of synchro-
that the Kramers approximatidi®] to the hopping rate al- nlzqt!on enables us to develop a cntenpn for predicting the
ways remains validA can never be large enough to causebosition of the minimum. For sypchromzatpp to occur the
deterministic switching, and the noise intensity should nofYStém must be capable of making a transition between the

exceed the(remaining energy barrier height. One readily States every half cycle. For a symmetric systers0) the
shows that the potential well at(i=1,2), vanishes af,  Crterion for this to occur is that the maximum Kramers rate

_ |C_(_1)i(2/3)a\/%|' so that we always maintaiA W,,ax attained during a complete cycle of the periodic force
<min(Aq ,Ax). must be greater thafor of the same ordgras the frequency

Figurel,Zb) shows the origin of the minimum error which of the external field(). More specifically, the criterion for
is observed in Fig. @). It is easy to see that the errf can ~ (N€_onset of synchronization can be stated gd1]

5 ~ -1 i
be presented as N times the erroiE, for N=1: 2m\Wina,0t~1 where St} . For the asymmetric case
1 under study here, a similar criterion can be found but now

we require thatVy, ;.= MiN(Wiomax: Woimax) » WhereW,onax
iE (11) andW,q,ax are the maximum Kramers ratésver one cyclg
JN E for transitions from state 1 and state 2, respectively. Using
this criterion the noise intensities that lead to the minimum
For smallD, transitions between the states are rare an

qre those that satisfy the equality
hence 1N is large. AsD is increased, /N rapidly de-
creasesapproximately exponentiallyuntil the system be- V2TWiomaxdt1=1, (12

E, =
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FIG. 4. The dimensionless standard deviation the erroy E, FIG. 5. The dimensionless standard deviationthe erroj E,

vs ¢/D, computed via Eq(9). A=0.35, 2=0.0025,a=1, andb VS A, computed via Eq(9). {1=0.0025, and>=0.003.
=1.

. _ o regime. In this regime, the dependence®T onc is almost
where 5t=0""JD/AA, A being the separatiofin the X  exponentia[8], corresponding to an extremely sensitive de-
coordinate between the potential maximum and minimum tection regime for very weak asymmetrigk signal. How-
in Fig. 3. The dashed line shows the valuesbobbtained pecomes critical to the dynamics. If the noise is too weak,
from Eq.(12) for variousc and the solid dots show the actual hopping events are infrequent and this leads to significant
values. Clearly, a reasonably good agreement is obtainedrors in computingAT. We have seen that increasiiy
This indicates that, just like stochastic resonance, the Minincreases the number of threshold crossing events, leading to
mum in the measurement error occurs when a stochastic time regime of synchronization and hence a reduction in the
scale(the inverse Kramers raités matched to a deterministic measurement error. We therefore conclude that, under the
time scale(external bias period . __appropriate conditions, the measurement error can be re-

Of course, one could reasonably expect a minimum in thgy,ced by the addition of noise.
error for fixed noise, if the bias and target signal parameters Fina|ly we note that, given the above discussion, the ef-
are varied. Figures 3, 4, and 5 show that this is indeed thgsct will not occur for strongly suprathreshold bias signals
case. _ y _ (the case considered in our earlier wg#). In this regime,
The results of this paper are critical to the operation ofthe system is always completely synchronizedfact, one
nonlinear detectors as threshold crossing devices, with thgniains a Gaussian distribution of residence timeesd add-
RTDs (and the associated mean valutken to be the quan- ing noise cannot increase the number of transitions in a fixed

tities that quantify small perturbations. Since this techniquepservation period,,,. Hence, the only effect of the noise is
is quite easy to implement experimentaMy, it is of interest {5 increase the error.

to understand the optimal regime of bias, given fixed detec-
tor parameters. In particular, the reference bias amplitude We gratefully acknowledge support from the Office of
should be subthreshold with/D>1 (the strongly nonlinear Naval Research, Code 331.
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