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Signal detection via residence times statistics: Noise-mediated minimization
of the measurement error
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We study the problem of detecting a small dc signal by quantifying its effect on the mean differenceDT in
residence times in the stable steady states of a bistable dynamical measurement device, in the presence of a
noise floor and a known time-sinusoidal bias signal. Errors in the measurement process occur due to a finite
observation time that is present in most practical scenarios. The error is found to have a nonmonotonic
dependence on the noise intensity; at a critical noise intensity, the error is minimized. This phenomenon,
reminiscent of the well-knownstochastic resonanceeffect, can also be obtained by adjusting the device tuning
parameters for a given noise floor. The effect appears to be most pronounced for subthreshold bias signals in
the strongly nonlinear response regime.
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A constant external signal can break the symmetry of n
linear systems; this phenomenon manifests itself, e.g.,
nonzero current in stochastic ratchets@1#, the appearance o
even harmonics of a known time-sinusoidal bias signal in
power spectral density~PSD! @2#, or a nonzero difference in
the average residence times in the stable attractors of a
state system@3,4#. The appearance of these features can
used as a means of detecting and quantifying a ‘‘target’’
signal @3–5# ~e.g., conventional fluxgate sensors use the
pearance of even harmonics in the PSD@6#!. However, in
most applications, one can only observe the signal for a fi
time intervalTob , thereby raising the spectre of a statistic
error in the detection procedure. This error depends on
length of the time series~i.e., directly onTob) as well as the
system and the noise parameters. It seems reasonable,
fore, to assume that the error could be minimized by a s
able adjustment of these parameters.

Here, we consider a bistable dynamical detector. In
absence of an asymmetrizing dc signal, the mean resid
times~and their density functions! in the stable steady state
are identical. The presence of the dc signal leads to a fi
difference in the mean residence times together with a s
ting of the associated density function. These phenomena
be quantified using a simple counting circuit, which allow
one to estimate the target signal from the mean reside
times differenceDT. The procedure has been successfu
utilized in a real dynamical device, a fluxgate magnetome
@4#, and boasts several advantages over conventional~PSD-
based! detection schemes. We will show that the measu
ment error, due to a finiteTob , exhibits a nonmonotonic
dependence on the noise intensity, i.e.,there is an optimal
noise intensity for which the error is minimized.

Our prototype system consists of the standard@7# over-
damped Duffing oscillator underpinned by the bistable
tential energy functionV(x,t)52(a/2)x21(b/4)x41cx
2Ax cos(Vt), that includes aknown external bias signa
A cos(Vt) in a zero-mean white noise floorj(t) with inten-
sity 2D:

ẋ52
]V~x,t !

]x
1j~ t !. ~1!
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The system asymmetry enters via the small~compared to
the energy barrier height in the absence of the periodic b!
target signalc; for cÞ0 the potentialV(x,t) is skewed with
the potential wells having unequal depths in the absenc
the periodic bias. We seta5b51 throughout this work.

In Ref. @8# we computed the residence times distributio
as well as the mean residence times differenceDT in the
adiabatic regime and the weak noise but strong forcing li
~i.e. for A/D@1 with A subthreshold.! In this regime, one
appears to get the maximal~nonlinear! shift DT, for a given
target signalc; accordingly, this is the regime for which w
compute the measurement error stemming from the fi
observation time. We note that the notion of the~finite! ob-
servation time was introduced in Ref.@4#, in connection with
the definition of a response signal-to-noise ratio for the c
of a strongly suprathreshold periodic bias signal; in t
regime—also the regime of our experiments@4#—DT is pro-
portional to c. Before studying the measurement error~in
DT), we outline the main results from our earlier work@8#.

The residence time distributions~RTDs! in the metastable
states are well approximated by sums of Gaussians@8#

P1~t!5~12p! (
m50

`
pm

A2ps2
expS 2

@t2~m11/2!T1d#2

2s2 D
~2!

for state 1; the RTD of state 2,p2(t), is identical but with
the substitutionsp→q, d→2d. The variables 12p and 1
2q designate the probabilities to escape states 1 and 2
spectively, in the first periodT; these probabilities corre
spond to the area under the first peak of the RTD~shown by
shaded regions in Fig. 1!; s is the width~standard deviation!
of the peaks;d is the asymmetry-induced shift in the pea
from locations (m11/2)T. It is straightforward to calculate
@8# the first moments of the RTDs,^t1& and ^t2&, from Eq.
~2!: ^t1&5apT/21d, ^t2&5aqT/22d, where ap,q5(1
1p,q)/(12p,q). Hence, the average difference in residen
times is
©2003 The American Physical Society33-1
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DT5~ap2aq!T/212d. ~3!

The detection/quantification of the constant signalc
hinges on the functional interrelation between it and the n
zero differenceDT in mean residence times. We now co
sider the normalized standard error, that results from the
nite observation timeTob , when making a measurement
DT.

Let t i ,n denote the measured residence times~for states
i P$1,2%) from which the average residence times are co
puted. Then forN residence time measurements for ea
state, we have

Tob5 (
n51

N

t1,n1 (
n51

N

t2,n . ~4!

The average values of the residence times, which includN

elements, aret̄ i5(1/N)(n51
N t i ,n with the differences be-

tween the average values~recall that^•••& denotes the the
oretical mean value computed directly from the RTD! t̄ i
2^t i&5dt i

, yielding the errors in the measurement of ea
mean residence time. Assuming the independence of the
dence times, and using the equations^t i ,n&5^t i& we obtain
for the average errors and their variances

^dt i
&5^t̄ i&2^t i&5

1

N
N^t i&2^t i&50, ~5!

s i
25^~dt i

2^dt i
&!2&5^~ t̄ i2^t i&!2&

5
1

N2 (
n51

N E
0

`

~t i ,n2^t i&!2Pi~t i ,n!dt i ,n

5
1

N S s21T2
p̃

~12 p̃!2D , ~6!

where we have used the shorthand notationp̃[(p,q) for i
5(1,2), respectively. We now introduce the average diff

FIG. 1. The residence times probability densitiesP1 and P2

obtained from Eq.~2!. The parameters area51, b51, c50.012,
A50.35, V50.0025, andD50.003.
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ence in the residence times in the metastable states; t
consist ofN residence times in each state:

DT̄5
1

N (
n51

N

~t1,n2t2,n!5
1

N (
n51

N

DTn .

Assuming^DTn&5DT we obtain the dispersion

sDT
2 5^~DT̄2DT!2&5s1

21s2
25

1

N S 2s21
T2p

~12p!2

1
T2q

~12q!2D . ~7!

We also note that observation timeTob is a random variable
@see the definition~4!# with average value

^Tob&5 (
n51

N

^t1,n&1 (
n51

N

^t2,n&5N~^t1&1^t2&!

5N~ap1aq!
T

2
. ~8!

Then, using Eqs.~3!, ~7!, and ~8! we obtain the dimen-
sionless standard deviation~or the error of the measurement!:

Er5
sDT

DT
5

1

~ap2aq!T/212d

3A~ap1aq!T

2^Tob&
S 2s21

pT2

~12p!2
1

qT2

~12q!2D .

~9!

It is clear that Er}^Tob&
21/2 and therefore lim̂Tob&→`Er

50, i.e., the error decreases with increasing observa
time, as should be expected. As a final note, we point out
expression~9! is obtained for fixedN. GeneralizingN to
mean the average number of switches between states in
fixed observation timeTob , we may rewritê Tob& asTob in
Eq. ~9!, valid whenTob@(^t1&1^t2&) ~however, it should
be noted that expression~9! is valid for arbitraryTob and
henceN).

Figure 2 shows the main result. We plot the error as
function of the noise intensity parameterD; good agreemen
between the theory and simulations is observed. The num
cal results are obtained via the following technique: for ev
chosen noise intensityD, the numerical experiments are don
M times, and the averaged quantitiesTobm

5(1/N)(n51
N (t1,n1t2,n)m and DT̄m5(1/N)(n51

N (t1,n

2t2,n)m (m51,2,3, . . . ,M ) are calculated. In terms of thes
averages we obtain^Tob&M5(1/M )(m51

M Tobm, DTM

5(1/M )(m51
M DT̄m , and sDTM

2 5(1/M )(m51
M (DT̄m

2DTM)2. The final expression for the numerically comput
error is then,

Er~Tob /T!1/2.
sDTM

DTM
A^Tob&M

T
. ~10!
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In all the figures we ensure that, given the asymme
inducing signalc, the bias signal amplitudeA is selected so
that the Kramers approximation@9# to the hopping rate al-
ways remains valid:A can never be large enough to cau
deterministic switching, and the noise intensity should
exceed the~remaining! energy barrier height. One readil
shows that the potential well atxi( i 51,2), vanishes atAci

5uc2(21)i(2/3)aAa/3bu, so that we always maintainA
,min(Ac1,Ac2).

Figure 2~b! shows the origin of the minimum error whic
is observed in Fig. 2~a!. It is easy to see that the errorEr can
be presented as 1/AN times the errorEr 1

for N51:

Er5
1

AN
Er 1

. ~11!

For smallD, transitions between the states are rare a
hence 1/AN is large. AsD is increased, 1/AN rapidly de-
creases~approximately exponentially! until the system be-

FIG. 2. ~a! The dimensionless standard deviation~or the error!
Er vs noise intensity parameterD. ~b! The errorEr 1

~dashed line!
and 1/AN ~solid line! in the same~normalized! units. The crossover
point approximately corresponds to the location of the minimum
~a!. A50.35, V50.0025, andc50.005. Theoretical results wer
obtained from Eq.~9! ~using expression forp,q,d,s obtained in
Ref. @8#!, data points are from digital simulation.
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gins to synchronize to the periodic bias signal—this causeN
to change relatively slowly over a range ofD. In fact, the
number of transitions in the timeTob becomes independen
of D ~for not too largeD), saturating atN/(Tob/2). How-
ever, in this region,Er 1

increases due to an increase ins,

hence, the normalized errorEr 1
increases@Fig. 2~b!#. Hence,

it is the interplay between the two effects, the decreasing
1/AN and the concomitant increasing ofEr 1

~both of which
are brought about by the synchronization of the respons
the periodic bias! that leads to the minimum in the errorEr .
This effect is therefore closely related to that of stochas
resonance@10# which is also related to the synchronization
the response to the periodic field. However, it should
stressed that the difference here is that in our system
signal to be detected is a dc field—not theknownperiodic
bias.

The fact that the minimum occurs as a result of synch
nization enables us to develop a criterion for predicting
position of the minimum. For synchronization to occur t
system must be capable of making a transition between
states every half cycle. For a symmetric system (c50) the
criterion for this to occur is that the maximum Kramers ra
Wmax attained during a complete cycle of the periodic for
must be greater than~or of the same order! as the frequency
of the external fieldV. More specifically, the criterion for
the onset of synchronization can be stated as@11#
A2pWmaxdt'1 wheredt}V21. For the asymmetric cas
under study here, a similar criterion can be found but n
we require thatWmax5min(W12max,W21max), whereW12max
andW21max are the maximum Kramers rates~over one cycle!
for transitions from state 1 and state 2, respectively. Us
this criterion the noise intensities that lead to the minimu
are those that satisfy the equality

A2pW12maxdt151, ~12!

FIG. 3. The dimensionless standard deviation~or the error! Er

vs noise intensity parameterD, computed via Eq.~9!. A50.35, V
50.0025, andc50.001, . . . ,0.012 with the step 0.001~from top to
bottom!. The dashed curve is the locus of criticalD values from Eq.
~12! and the dots are the actual critical values.

n
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where dt5V21AD/AD, D being the separation~in the x
coordinate! between the potential maximum and minimu
when the Kramers rate is maximized. This criterion is tes
in Fig. 3. The dashed line shows the values ofD obtained
from Eq.~12! for variousc and the solid dots show the actu
values. Clearly, a reasonably good agreement is obtai
This indicates that, just like stochastic resonance, the m
mum in the measurement error occurs when a stochastic
scale~the inverse Kramers rate! is matched to a deterministi
time scale~external bias period!.

Of course, one could reasonably expect a minimum in
error for fixed noise, if the bias and target signal parame
are varied. Figures 3, 4, and 5 show that this is indeed
case.

The results of this paper are critical to the operation
nonlinear detectors as threshold crossing devices, with
RTDs ~and the associated mean values! taken to be the quan
tities that quantify small perturbations. Since this techniq
is quite easy to implement experimentally@4#, it is of interest
to understand the optimal regime of bias, given fixed det
tor parameters. In particular, the reference bias amplit
should be subthreshold withA/D@1 ~thestrongly nonlinear

FIG. 4. The dimensionless standard deviation~or the error! Er

vs c/D, computed via Eq.~9!. A50.35, V50.0025,a51, andb
51.
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regime!. In this regime, the dependence ofDT on c is almost
exponential@8#, corresponding to an extremely sensitive d
tection regime for very weak asymmetries~dc signals!. How-
ever, because the signals are subthreshold, the noise
becomes critical to the dynamics. If the noise is too we
hopping events are infrequent and this leads to signific
errors in computingDT. We have seen that increasingD
increases the number of threshold crossing events, leadin
a regime of synchronization and hence a reduction in
measurement error. We therefore conclude that, under
appropriate conditions, the measurement error can be
duced by the addition of noise.

Finally we note that, given the above discussion, the
fect will not occur for strongly suprathreshold bias signa
~the case considered in our earlier work@4#!. In this regime,
the system is always completely synchronized~in fact, one
obtains a Gaussian distribution of residence times! and add-
ing noise cannot increase the number of transitions in a fi
observation periodTob . Hence, the only effect of the noise
to increase the error.

We gratefully acknowledge support from the Office
Naval Research, Code 331.

FIG. 5. The dimensionless standard deviation~or the error! Er

vs A, computed via Eq.~9!. V50.0025, andD50.003.
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